
 
 

  Transparent and Pervasive Security 
 

 

Copyright 2012, Brophey Consulting, LLC and Transvasive Security, LLC. All Rights Reserved. This work is licensed under the 
Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ 
or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. 

BROPHEY	   CONSULTING
Bridging	   Technology	   and	  
Business	   S trategy

BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

By John Benninghoff and Karl Brophey 

Abstract 
Defining functional security requirements is a key component of Behavioral Security 
Modeling, a method to improve security through accurately modeling human/information 
interactions in social terms. The paper proposes a practical, SDLC agnostic method for 
gathering functional security requirements by establishing limits on interactions through a 
series of questions to identify, clarify, and uncover hidden constraints. Five categories of 
constraints are presented, along with advice and “requirement patterns” to facilitate 
discussions with stakeholders and translate business needs into unambiguous security 
requirements. General advice on improving constraints, implementation considerations, 
security actions, quality assurance, and documenting post conditions are also discussed. 

Version 1.0 disclaimer: this white paper attempts to formally capture our collective 
knowledge on how to effectively define functional security requirements. The next step is 
to test the theory by implementing the approach in a number of application development 
environments. 

1 Behavioral Information Security and Behavioral Security Modeling 
Behavioral Information Security (BIS) is a formal methodology to manage information risk, derived from 
knowledge of how humans behave and interact with information. It is a new philosophy of security created 
to address gaps in our current understanding and treatment of people issues in the information security 
profession. The goals of BIS include developing new methods to address the “people problem”, reduce 
cost, and improve the overall effectiveness of information security. 

Behavioral Security Modeling (BSM) was conceived as a way of modeling interactions between 
information and people in terms of socially defined roles and the expected behaviors of the system being 
designed. By reducing the difference between the expected system behaviors and the actual system 
behaviors, we can manage the vulnerabilities that are inevitably introduced when the expected and actual 
system behaviors are out of alignment. BSM asserts that robust, secure information systems are best 
achieved through carefully modeling human/information interactions in social terms. 

In a very real sense, the goal of BSM is to improve software quality as it relates to security by reducing 
ambiguity and ensuring security design accurately represents the stakeholdersʼ needs. “More predictable 
systems” means systems that correctly implement stakeholder requirements. While the complete 
Behavioral Security Modeling approach includes all aspects of planning, designing, building, and 
deploying information systems, the first step, establishing the stakeholder requirements, is critical to the 
BSM approach, and is the focus of this white paper. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  2 

2 Functional Security Requirements Gathering 
The Behavioral Security Modeling approach to functional security requirements gathering is a practical 
method based on real-world experiences working with business, development, and infrastructure teams 
on specifying security requirements, designed to address a current gap in both information security and 
application development practices. In meeting the gap it is simultaneously focused on meeting the needs 
of various participating stakeholders and leveraging the strengths they each bring to the table. 

This gap is made apparent in outsidersʼ perception of information security. One of the authors personally 
experienced this perception in a telling conversation with a department head. He was greeted with “I donʼt 
care about this security stuff, it only causes problems when my managers request new users.” Later in the 
conversation, the department head stated “Some of these system functions are so sensitive that not only 
do they need to be restricted to my team, but this specific group of people on my team.” In retrospect, it is 
clear that the department head viewed security as “keeping the bad guys out,” (thus “not her job”) while at 
the same time having real needs for business controls that can only be addressed through security 
controls. 

Functional security requirements gathering is driven primarily by organizational needs and the need for 
safety controls (protecting against errors and other non-malicious threats). BSM posits that to have robust 
and secure information systems that the functional requirements must define all human/information 
interactions permitted by the system; if it is discovered they do not, the team has discovered a defect and 
thus a quality issue1. 

The BSM approach specifically excludes any consideration of malicious actors (threats) from functional 
requirements; they are to be addressed through architectural (non-functional) requirements, adapted to 
current threats. Malicious actors either exploit weaknesses in the system architecture to bypass the 
normal application security controls, or abuse privileges they already have. Defending against malicious 
attacks is a separate problem that is better addressed through architectural requirements and design 
review. Good functional security requirements indirectly protect against insider abuse, by applying 
appropriate constraints to authorized usersʼ actions. 

Traditionally, security requirements have been exclusively non-functional / quality / architectural 
requirements, and most of the literature on security requirements reflects this, and can be summarized as 
“Keep the Bad Guys from messing with our stuff.” Misuse cases, policy requirements, and the PCI Data 
Security Standard all fall into this category, which is characterized by requirements that are definable and 
repeatable across projects within an organization, or even between organizations, driven by the threats 
and exposures the organization faces. 

In contrast, the goal of functional security requirements is to specify “This is what the Good Guys are 
allowed (authorized) and not allowed to do,” which is a more difficult task since it is specific to the system 
being built. Where non-functional requirements provide a blacklist of bad things to be controlled, 
functional requirements provide a whitelist of authorized activity2. 

                                                        
1 Different teams may consider this a deficiency in the original requirements, while others may see it as 
having identified the need for an enhancement; regardless of the semantics, when the additional 

2 Although whitelists donʼt directly address malicious attacks, they make implementing security controls 
easier by defining the boundaries of authorized activity. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  3 

The majority of academic papers and articles from professional journals on security requirements 
discovered in the (admittedly cursory) literature search focused mainly or exclusively on malicious threats 
through misuse cases. The authors of this paper are not aware of any methods for systematically 
gathering functional security requirements beyond simple approaches such as CRUD (defining Create, 
Read, Update, and Delete for each function/field in the application for each user type), a gap that this 
paper attempts to address. Use of Role-Based Access Controls (RBAC) is considered a best practice to 
implementing authorization, the major component of functional security requirements, but it doesnʼt 
facilitate capture of implementation-agnostic authorization requirements, and has limitations that will be 
discussed later. 

We have written this paper as a first attempt to address this methodology gap and to provide 
development teams and security professionals with tools to gather and refine good functional security 
requirements. 

The approach described in this paper is meant to be flexible and adaptable to the software methodology 
used by any organization, whether it is Waterfall, Agile, or The Next Big Thing in Software Development. 
To that end, we present a framework for describing functional security requirements, checklists of 
questions to assist with eliciting requirements, as well as general advice, including some considerations 
that impact design. We also begin the process of creating a catalog of requirement patterns that address 
functional security concerns—a process we expect to take some time and community involvement to 
mature. This paper covers what the authors consider the most-neglected area of development: functional 
security requirements. 

3 Approach 
BSM views functional security requirements as including definitions of well thought out constraints, 
security actions, and post conditions. Within BSM we will define a security-related constraint as placing 
limits on interactions between Actors and Objects through defined Actions in information systems. Actors 
include people as well as external systems. When Actors are people they can be described by social 
groups within the organization (or broader community), by organizationally relevant roles filled by 
individuals, or by specific persons. System Actors can similarly be described by their social role—the role 
of the person or group they represent—or as a specific system. Objects represent logical sets of 
information or individual records or data elements that exist within the information system being described. 
Actions are externally driven operations within the information system, and include simple actions (e.g. 
read or write), complex actions that represent a business process (e.g. create meeting), or security 
actions (e.g. identify, authenticate, authorize, delegate, etc.). 

Functional requirements have always contained some amount of expressed constraints. BSM seeks to 
make constraints a much more prominent piece of the requirements gathering process. To this end, 
identifying the desired constraints is accomplished through a structured series of questions to be 
considered. These questions are designed to establish appropriate limits of user authority within the 
system, while eliminating ambiguity and uncovering any implied “hidden” constraints. 

For each externally driven operation within the system, the requirements need to define under what 
condition(s) the interaction is allowed and not allowed. A complete requirement3 captures all of the 
constraints that apply to a particular operation. In general, stakeholders should consider “who needs 

                                                        
3 See appendix on Styles of Requirements Capture 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  4 

access?” first, and “who shouldnʼt have access?” second, in order to encourage thinking in terms of least-
privilege. 

In addition to explicitly defining the criteria when an interaction is allowed to proceed normally (the “Go 
Path”), functional requirements must also specify what happens if the criteria are not met (the “No-Go 
Path”4). Defining the No-Go path is important to both good user experience, and to ensure conditions that 
should be stopped or redirected are tested and verified later in the development cycle. 

Returning to the first premise, BSM asserts that for a robust system that functional requirements must 
define all human/information interactions permitted by the system. Our focus is primarily on constraints, 
as we have observed that to be the largest area of deficiency in application development efforts we have 
participated in, but there are other areas to keep in mind. Some projects come up short in capturing and 
recording security actions, (e.g. business functions with specific security implications, such as identify, 
authenticate, authorize, create user, and delegate). We will touch on recording these types of 
requirements. 

Since the goal is to ensure that requirements are comprehensive, in practice there is great synergy with 
modern quality assurance practices. From a functional point of view, security issues are quality issues 
and quality issues are security issues. General quality assurance techniques for software requirements 
gathering are well beyond the scope of this paper, but fortunately there is a wealth of information already 
available; we will call out a few of the resources we think look particularly promising. 

Finally, we will touch briefly on the inclusion of “post conditions” within the set of requirements for an 
information system. A post condition is a statement of what must be true when a userʼs Action is complete, 
and can be stated both for successful completion and unsuccessful completion. For example, when an 
account transfer is completed successfully, the funds must be credited to the destination account and 
debited from the source account; if the transfer fails, the source account must still contain the funds, and 
the destination account must not have been increased. They are a means of explicitly calling out 
conditions that otherwise might be left as assumptions. 

4 Constraints 
Constraints are limits on the functionality of the system. They can limit who, where, when, or on what a 
function can be applied, and may constitute an outright prohibition, or be nuanced such as bounds on the 
size of a financial transaction. To help teams find gaps in requirements, we will discuss constraints in 
terms of five major categories: Social, Information, Location, Temporal, and Input. We will discuss each 
type in turn, and then provide additional advice on effectively gathering requirements around constraints. 

Some constraints may fit the description for more than one of the categories. That is okay. What is 
important is that if the constraint is needed for the system, that it be reflected in the requirements for the 
system. Donʼt get hung up in philosophical discussions of whether a particular constraint is social, data, or 
input. We call out some distinctions of how we think about the constraints just for the purpose of helping 
create a mental model for the types of topics to consider for each category. 

                                                        
4 The term “No-Go Path” appears to have originated in the Systems Safety discipline in the US Military; 
the earliest reference the authors could find is in NSWC TR 89-33 “Software Systems Safety Design 
Guidelines and Recommendations.” 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  5 

For each category of constraint we will first describe what the constraint is. We then discuss what the 
questions are that can be asked or considered to identify constraints of the given type. These questions 
are organized as “opening questions” followed by “clarifying questions” that should help ensure 
requirements are complete and unambiguous. To that end we also provide guidance around “uncovering 
hidden constraints,” designed to reveal unstated security constraints, as well as general “advice” for the 
type of constraint being discussed. 

Finally we provide known patterns for constraints of the given type. We use the term “pattern” in the 
manner used of “software design patterns,” which are a well-established means in software development 
to simplify communication and avoid “re-inventing the wheel.” A design pattern is a generalized solution 
for a problem frequently encountered, which is then given a name that can be used to succinctly 
communicate not only the problem but also the solution. 

Design patterns are generally focused on problems faced in implementing a system, which is to say in 
system architecture, or in the structure of code. Our patterns are focused on the requirements for software 
rather than how those requirements are implemented, and thus the existing collections of software 
patterns are not of great help; however we firmly believe that the pattern mindset will both ease the 
specification of constraints and improve the quality of those specifications. To that end we have identified 
requirements patterns we have seen in our practice as a starting point. We will work to have a location 
available online5 where these and additional patterns can be found and used by all. We encourage others 
to nominate patterns from your experience. 

In some cases we also identify “anti-patterns.” Like the name implies, it is the antithesis of a pattern, 
which in this case it means a known approach not to use. There may be situations where using an anti-
pattern is appropriate, but it should be done with caution. We acknowledge that some anti-patterns can be 
controversial (even if a majority agree an approach is a bad idea, others may still embrace the approach), 
so as always use your judgment! 

After discussing the types of constraints we will address an equally key concept, which is what happens 
when a user violates a constraint in a section titled “Go Path and No-Go Path: the Effect of Constraints.” A 
“Go Path” is what happens when a constraint is not encountered. Thus the section really discusses the 
options and patterns for “No-Go Paths”—which could equally well have been called “Beyond ʻAccess 
Deniedʼ” as we explore more modern ways of guiding users through constraints. 

We will wrap up our discussion of constraints with general advice on the requirements gathering process 
around constraints, and even though our focus is on requirements gathering rather than implementation, 
we will end by touching on some key implementation considerations. 

4.1 Social (Organizational) Constraints 
Social constraints define permission to perform an Action based on the userʼs identity. That is to say, 
“who you are.” Such constraints can be expressed for each Action as the social group permitted access. 
In our experience these are best expressed in the context of the organization, for example “Salesperson,” 
or, more accurately, “all salespeople of Company X.” 

                                                        
5 A link to the security requirements pattern repository will be found on http://transvasive.com when it is 
available. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  6 

Whenever possible, base your social constraints on existing social groups. Organizations will frequently 
have language to describe the groups used to provision access. Using such existing terminology results 
in requirements that are easier for the business6 to understand. Requirements that are more easily 
understood are more easily verified to be correct, and so in the context of security are more likely to result 
in a system that appropriately implements security rules. Using the natural language of the organization is 
an inherently human-centric practice and thus very important from a BSM point of view. A more formal 
way of saying this is that BSM asserts that access to functions is granted based on specialization within a 
group or due to a trust relationship between groups/individuals. 

Generally, subjects are not expressed in terms of individual people, such as “I want to grant access to 
Alice,” rather they are expressed in terms of the subjectsʼ role (specialty) or social group (organizational 
unit), such as “I want to grant access to all cryptographers.” However, in some cases individual access is 
appropriate, with a specialty or social group of one. This is particularly true with a specialty case where 
access is being granted not to a person, but to an external system; such access is frequently on a case-
by-case basis. 

Keep in mind that social constraints restrict access to Actions (functions or operations of the system). We 
will explore constraints that restrict access to Objects (information) in the next section (Information 
Constraints). You will see that information constraints are often expressed in terms of social groups as 
well. In our formulation, social constraints apply only to the relationship between Actors and Actions. 

Opening	  Questions	  
For each Action, what groups of people need access to this Action to do their jobs / conduct business? 
Who should never have access?7 

Clarifying	  Questions	  
If you know a constraint is tied to a specific person, Alice, but are thinking it is Alice herself: What is it 
about Aliceʼs job (specialty) that makes it appropriate for her to have access? What is it about Aliceʼs 
position within the organization (social group) that makes it appropriate for her to have access? (Note: 
sometimes it will turn out there are singletons of access, but this is by far the exception rather than the 
rule.) 

Socially ambiguous roles, where B is a subset of A: Do you mean all A? or just B? Example: When you 
say “employees,” do you mean all employees and contractors, or just all employees? 

Ambiguous role definitions: Are all roles listed defined in such a way that would be clear to any reader 
(stakeholder, analyst, developer, tester, etc.)? 

                                                        
6 We will make reference to “the business” to mean “representatives of the organization sponsoring the 
development of the information system” or with whatever term you use for representatives of the user 
base. 

7 It is good security practice to focus on who does have access (whitelisting) before who should be denied 
access (blacklisting). Controlling access primarily by denial tends to lead to mistakes that allow 
unintended access. More importantly, whitelisting mistakes are nearly always detected, while blacklisting 
mistakes are frequently not detected until a security incident occurs. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  7 

Distinguishing from information restrictions: Are people in this group (dis)allowed from using this function 
on some information in the system, or all of it? If it turns out to be information-based, see the guidance in 
the section on information constraints. 

Uncovering	  Hidden	  Constraints	  
If someone struggles with identifying groups: What specific people need access to this function? What do 
they have in common? (Generalize from the specific examples) 

Exceptions: Does everyone on this team need access to this function? What about (pick a specific 
example)? 

Missing groups: So, everyone outside of this team will not need access to this function? What about (pick 
a specific example)? 

Consider usage by external groups: Are partners / teams outside of the organization who need access to 
the function? Are there any that should never have access? 

Advice	  
Understanding what groups exist within the organization is quite helpful to capturing good social 
constraints. Having a checklist of already-established groups (a Social Group Catalog) is even better. Org 
charts are a form of this from business side, and actor inventories are a technical-side example. Security 
practitioners should develop and refine a standard set of social groups for their organizations; this is 
commonly done when the organization has implemented a Role-Based Access Control (RBAC) model, 
but need not be. 

It is not usually a part of analyzing the constraints for any particular Action, but at some point you should 
confront the question of what a user with no account sees/can do. In many systems the answer is that 
such a user would see the login screen and nothing else, but web applications frequently have other 
answers and the “no account” case can be inadvertently left out until very, very late in development. 

In the end, our strongest advice for the practitioner is to try to think less about who the Actor is and more 
about what characteristic of the Actor leads to authorization to perform an Action. As you look at the 
patterns, below, you will see that this holds both with RBAR and with ABAR. 

Patterns	  
Role-Based Access Requirements (RBAR) Pattern. Role-Based Access Requirements is a means to 
define how to authorize Actors to Actions. People (Actors) are assigned to one or more roles, based on 
their job functions or other social criteria, and permissions to Actions are granted to roles. This is a 
method of defining requirements that would directly feed into a Role-Based Access Control (RBAC) 
implementation, which is the security infrastructure used by most large organizations, and is widely 
accepted as the standard approach to managing authorization. RBAR works very well for Social 
constraints, but is not effective for other types of constraints. An advantage of defining Social constraints 
via RBAR is that there are readily available tools to assist in implementing such a scheme. 

Attribute-Based Access Requirements (ABAR) Pattern. Our discussion of social constraints as being 
based on social groups almost pre-supposes the RBAR Pattern, but the ABAR Pattern is an alternative. 
Just as RBAR is a method of defining requirements that feed easily into RBAC implementations, ABAR is 
a method of defining requirements that would feed easily into an Attribute-Based Access Control (ABAC) 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  8 

implementation. ABAR defines authorization based on attributes of the user, for example restricting an 
Action unless the Actor is over 21 years old. How you verify the accuracy of the attributes is an issue with 
implementation, but if the security controls are truly in terms of attributes, then the requirements should 
dictate the attributes rather than the “roles” (social groups, etc.). 

Action Groups Pattern. Action groups are higher-level Actions (“meta-Actions”) that the finer grained 
Actions the system offers roll up into. “CRUD” (create, read, update, delete) is sometimes used in this 
manner, where there may be many, many Actions that perform a “read” operation, but permissions are 
set for all such Actions based on the parent action of “read”. To use this pattern, define your set of meta-
Actions and map each Action to a meta-Action. Write your constraints in terms of the meta-Actions. If you 
find you must map one Action to multiple meta-Actions, a least-privilege principle should be applied such 
that a user must be authorized to all associated meta-Actions in order to perform the Action. Note that this 
pattern is fully compatible for use with either the RBAR Pattern or the ABAR Pattern. 

“Everyone” (Anti-Pattern). “Everyone” is a logical construct in many operating systems representing 
any security context, the logical opposite of “Nobody.” While useful in system administration, it is 
dangerous to use in requirements definition, since people will frequently make unstated assumptions by 
associating “Everyone” with a social group that fits with the context. This anti-pattern can be repeated with 
other broadly defined social groups, such as “All Employees” which could mean either people on the 
organizationʼs payroll, or all people working for the company, which would include off-payroll contractors. 
Avoid this anti-pattern by asking clarifying questions to specifically define what “Everyone” means, but be 
ready to embrace it in those cases where you establish that it is the correct answer (such as with a public 
website). 

Deny Access To… (Anti-Pattern). “Deny access to (social group)” explicitly forbids a specific group from 
executing a function. In this anti-pattern, access is often but not always broadly granted, with a specific 
team excluded. Deny logic is often how people think, but invariably leads to broken security later on, and 
should be avoided. Deny is the security professionsʼ GOTO statement. Refactor by exploring why an 
exception exists and more narrowly defining the group(s) granted access. 

4.2 Information Constraints 
Information constraints define permission to access Objects (information) based on “what the information 
is.” They can refer to any single Object or any definable set of Objects managed by the system. 
Information constraints can apply to either a single object, such as “the customerʼs (the one accessing the 
function) credit card number,” or all objects, such as “all blog posts,” and can also be limited by other 
properties of the information itself, such as “clients served by the St Paul office.” 

Information constraints at their simplest may apply in the context of a particular system Action, just as we 
saw with social constraints; an example could be “delete account can only be applied to accounts that 
have never been billed”. In this case we do not contemplate anything about the Actor, only the Action and 
the Object. 

Information constraints more frequently get combined with a social role resulting in rules such as “a 
patient may access their own records” or “sales people may only access clients served for their sales 
district”. In these examples we see both an Object and a characterization of an associated Actor. While 
one could say that “access” is a system Action, the intent is in defining a universal requirement for the 
system that crosses all Actions. The key to note for information constraints that include Actor information 
is that you are now stating that there has to be a correlation in the managed data of the system between 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  9 

the system users and the data being managed. In the first example, “patients” are an entity managed by 
the system but are also users of the system, and thus there is a need to correlate user identities to the 
managed data. In the second example, it is implied that Actors who are “sales people” must have an 
attribute called “sales district”, and that in the managed data that a “client” also has an attribute called 
“sales district” (or perhaps “served by sales district”). Because of these complications, make certain the 
system specifications include user functions to manage the associations between managed data and 
system users.8 

The most complicated information constraints will factor in Actor, Action, and Object. This would be the 
case when a broad set of users can view a type of data, but only a subset can edit that same type of data. 
This level of detailed control can make a system tedious to specify and can greatly increase the 
magnitude of complexity for a system (with related impacts on cost and quality). When you need it, you 
need it, but think if you have alternatives before easily jumping to this style of “compound constraint”. If 
you do need it, we have some suggestions in the “Advice” section on taming requirements of this sort. 

Information constraints differ from social constraints in that they restrict access to information (Objects), 
where social constraints restrict access to functions (Actions). Even when information constraints are 
expressed in terms of social groups, the constraint is tied to a property of the information itself, either the 
data or metadata. Where social constraints express a relationship between identity (Actor) and functions 
(Actions), information constraints can relate identity (Actor) to information (Objects), functions (Actions) to 
information (Objects), or functions (Actions) in the context of a particular Actor, to information (Objects). 

Opening	  Questions	  
Can this Action be applied to all data? If not, what data can it be applied to? Do all users have access to 
the same data with this Action? If not, what information does each social group need to execute this 
function against? Is there data that should be excluded? 

Does the person/system calling this function only need access to their own data? 

Clarifying	  Questions	  
Ambiguous grouping of data: What attributes differentiate the allowed data from the disallowed data? Are 
the differentiations implicit? (Make them explicit) Are they defined in such a way that would be clear to 
any reader (stakeholder, analyst, developer, tester, etc.)? (If not, rewrite to make them unambiguous.) 

The remaining clarifying questions only apply if the constraint has a social component. 

Ambiguous associations between Actor and Object: Is it clear for each constraint that links Actors and 
Objects, how to interpret that association? For example, if the constraint limits access to “the userʼs own 
bank accounts”, is it clearly understood how that is determined? (Must you be the first owner listed? Also 
listed on the account? Listed as a signer?) Rewrite ambiguous requirements so that assumptions donʼt 
need to be made (for example, by explicitly stating assumptions). 

If you know a constraint is tied to a specific person, Alice, but are thinking it is Alice herself: What is it 
about Aliceʼs job (specialty) that makes it appropriate for her to have access? What is it about Aliceʼs 
position within the organization (social group) that makes it appropriate for her to have access? 
                                                        
8 It is also useful for those who model information for the system recognize that this form of requirement 
immediately implies that there must be a correlation to users within the managed data. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  10 

Socially ambiguous roles, where B is a subset of A: Do you mean all A? or just B? Example: Do you 
mean all employees and contractors, or just all employees? 

Identifying social-only restrictions: Are people on this team allowed (or disallowed) from accessing this 
data with just one function, or all functions? If it is for all functions, write the constraint as a general 
constraint for the system, not just for this Action (what would happen if you forgot it for one of the 
Actions?) 

Uncovering	  Hidden	  Constraints	  
If someone struggles with identifying data groupings: Is there sensitive data in the system that requires 
additional restrictions? 

Identifying “private” data: What impact would there be if this data was shown on the welcome page, 
immediately after login? 

Exceptions: Does everyone on this team need access to this information? What about (specific example)? 

Missing groups: So, everyone outside of this team will not need access to this information? What about 
(specific example)? 

Consider usage by external groups: Are partners / teams outside of the organization who need access to 
the data? Which specific data? Are there any that should never have access? 

Advice	  
Understanding what data exists within the organization, ownership of data, and how data is shared 
between groups informs capture of data constraints. In principle, formal data ownership is desirable, but 
rarely implemented in practice (but data governance programs are on the rise—leverage it if your 
organization has one). Security practitioners should develop a catalog of common data groupings (a Data 
Group Catalog), such as “sales office” or “sales region.” If your organization has prepared a formal data 
classification scheme and already mapped it onto data, it may also be an asset for requirements definition. 

Social constraints are much more common than information constraints, which can lead to problems 
when implementing information constraints. When possible, Action access should be managed separately 
from Object access. In that model each Action would have a list of authorized users, (regardless of 
Object) and each Object would have a list of authorized users (regardless of Action). The more complex 
relationships (granting access to objects for a subset of functions the actor is authorized to use) are 
inherently costly to implement and manage9. 

In the cases where you canʼt avoid combining Action, Object, and Actor into a single constraint, our best 
advice is to seek to generalize. Rather than making constraint determinations at the lowest level—i.e. 
each user group for each type of data for each system function—instead define as many of the 
constraints as broadly as possible. At a minimum, use the Action Group pattern from the section on social 
constraints. If you can define a relationship between Actor and Object independent of Action, do so. If you 
can define a relationship between Action and Object (or better yet, Action Group and Object), do so. 

                                                        
9 As a note for implementation: trying to manage object access with infrastructure exclusively designed to 
support function (Action) access is very difficult, if even possible. Most solutions the authors have seen 
have been homegrown. ABAC and XACML look promising for taming this problem. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  11 

Define the fully detailed Actor for Action on Object only on that subset of cases where the rules do not 
lend to generalization. 

Patterns	  
Dual Controls Pattern. The Dual Controls pattern enforces a common financial control: requiring two 
different people to approve a transaction. Having two “signatures” makes collusion necessary in order to 
defraud the organization, which is much less likely than a malicious insider acting alone. Frequently this 
pattern may also prohibit one of the Actors from having organizational authority over the other. It thus 
manifests as a limit for approval Actions on which transactions a given Actor can act upon (i.e. not 
transactions that they originated, nor transactions that subordinates originated). 

Role Based Data Access Requirements (RBDAR) Pattern. Role Based Data Access Requirements10 
define how to authorize permissions to data contained and managed by the information system. Like 
RBAR, people are assigned to one or more roles, based on their social group memberships, and 
permissions are granted to roles. Unlike RBAR, RBDAR permit or deny use of any function (Action) on the 
designated data (Object). 

Access Control List (ACL) Style Requirements Pattern. This is again a style of writing requirements 
based on a common security management implementation, in this case Access Control Lists. An Access 
Control List allows arbitrary parings of identity and objects to functions. In the most complex form, an ACL 
is a list of Access Control Entries (ACEs), attached to a single Object where each entry consists of a role 
(Actor) and function (Action) pair that is allowed to manipulate the Object. Access Control Lists 
traditionally provide a fixed list of primitive functions, such as read and write, so either also use the Action 
Group Pattern, or extend past the traditional ACL and include all Actions defined within the system. While 
the traditional ACL would be defined for each Object individually, for the ACL-Style Requirements Pattern, 
we recommend also using the RBDAR Pattern whenever possible (to set access for groups of Objects, 
rather than individual Objects). 

An ACE in the complex form might look like: 

Allow Accountants (role) to Add a General Ledger Entry (function) to the 
General Ledger of Firm X (object). 

Use this pattern only in cases where all such permissions are being chosen during design and where they 
will remain fairly static once in production. 

By contrast, in situations where the system manages access permissions as part of the user functionality 
(e.g. Microsoft SharePoint®) then you need not provide ACL-Style Requirements, but rather you need to 
ensure that such functionality is defined for the system. This would include user Actions to maintain the 
ACLs for the data as the data changes within the system. 

Attribute-Based Data Access Requirements (ABDAR) Pattern. Perhaps unsurprisingly, this takes the 
notion of identifying users based on attributes of the user, rather than roles (social grouping) they 
associate to, and applies it to permissions to data contained and managed by the information system. 

                                                        
10 Unlike RBAR and ABAR, there is no pre-existing implementation of “RBDAC” that the authors are 
aware of. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  12 

“My Data” Pattern. The “My Data” Pattern is used when managed information within the system logically 
“belongs” (is owned by) to or represents the current user of the system. Note that logical ownership does 
not necessarily equate to legal ownership. The key to using this pattern in requirements is to provide an 
unambiguous definition of what data “belongs” to an arbitrary user. Unambiguous, as usual, means to 
define in such a way that would be clear to any reader (stakeholder, analyst, developer, tester, etc.). 

Delegation Functionality. If you find yourself with constraints stating that an Actor may view Objects 
based on a different Actor having delegated permissions to see and do what that different Actor can see 
and do, then what you need isnʼt constraint language, but a full delegation and delegation management 
feature. See the discussion of “Delegating Authorization” in Section 5.3, Security Actions Performed by 
the End User, for more information. 

4.3 Location Constraints 
Location constraints are defined by “where you are,” the physical (or logical) location of the Actor 
executing an Action. Location can be constrained to a specific location (Minneapolis office), a group of 
locations (all offices, remote access locations), or unconstrained. 

Although information constraints frequently incorporate location, information constraints are based on 
attributes of an Object, and restrict access to Objects, while location constraints are based on attributes of 
the Actor, and restrict access to Actions. It is possible for a location constraint to limit access to data 
rather than Actions (e.g. not being able to access Top Secret designated documents when not on a 
properly secured network), but the authors have not seen this come up in our experience. 

Historically, location constraints have been rarely used, except by default (“in the office” vs. “offsite”), 
although with the growth of IP geolocation, location constraints are becoming more common. 

Opening	  Questions	  
Are there policies governing where the system (or particular functions, or particular data) may be 
accessed from? If so, do you want those policies enforced by the system? 

Where is the team that will be executing this function physically located? 

Does this team need the ability to execute this function from anywhere in the world, or from specific 
locations? 

Will there be localized versions of the application presented to users in different countries? Note: ensuring 
users only use appropriately localized versions can be a security concern if the localization includes 
mandated limits. 

Clarifying	  Questions	  
Ambiguous location or location groupings: What differentiates the allowed location(s) from the disallowed 
location(s)? 

Uncovering	  Hidden	  Constraints	  
Location Anchoring: Does the team always operate in a specific physical location? If so, use of the 
function can be constrained to that location. 

On-Premise Only / Remote Access: Does the team need the ability to work from home, or from other 
remote locations away from the organizationʼs physical offices? 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  13 

Consider usage by external groups: Are partners / teams outside of the organization who need access to 
the data? Where do they physically reside? 

Consider “Banned” locations: Are there Countries, States, or other locations that should be blocked from 
using the application, or specific features? For example, some countries have laws restricting the use of 
encryption. 

Consider simultaneous login: If an account is accessing the system twice from different locations, should 
the system react in some way? 

Advice	  
Donʼt assume that you need to find location constraints. Many systems do not have any. See Section 4.7, 
Techniques to Improve Constraint Requirements, for discussion on the question of whether you should 
apply restrictions just because you can. 

If you will be considering location constraints, understanding the physical locations the organization 
occupies and how they relate to the organizational social structure is helpful. A catalog of locations and 
logical groups may be helpful. 

Using location in authorization decisions is relatively new, but can be a powerful tool to limit unauthorized 
access. (In the past, location based security was largely limited to network design rather than logical 
authorization decisions based on location markers.) Credit card issuers already use location in 
authorization decisions, denying card-present charges in two distant locations in too narrow of a time 
span. Care should be taken in trusting location data, however. One example of this was related to the 
authors: a credit card transaction with a Texas-based vendor at a traveling fair in Minnesota made it 
appear to the issuing bank that the cardholder had made transactions in two states in a very short period 
of time, and triggered a fraud alert. 

The example highlights one of the main challenges in implementing location-based constraints: how do 
you determine physical location? Even IP geolocation isnʼt fully reliable. As always, the authors 
recommend the requirements be written strictly as the business need, with implementation methods only 
dictated if the business actually canʼt abide a different means of implementing. With location constraints 
however, after the requirements are articulated there will almost always be design tradeoffs that need to 
be discussed with the project stakeholders. 

Patterns	  
On-Premise Only Pattern. On-Premise Only limits all use of an application to people physically located 
on company premises, office buildings and the like. (Before the introduction of remote access 
technologies, all computer use followed this model.) Remote access and VPN must be taken into account 
when you use this pattern; for example particular applications can be deliberately excluded from VPN 
access if needed (that is the implementation detail, the point is that if you have a requirement to list it and 
then let the implementers come back with options on how to make it work). 

Console Only Pattern. This pattern is seen in the Root Login on Console Only restriction to limit 
administrative logins, including the built-in Windows Administrator and UNIX root accounts, to the 
keyboard and display physically attached to the server hardware. So if your project is a server operating 
system, you may already use this pattern. This pattern can also be used for highly sensitive business 
operations, like high-value wire transfers, by limiting them to dedicated terminals. Note that connecting the 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  14 

physical server to a KVM switch with a remote control option may ease administration, but breaks the 
security model. The Console Only Pattern is a specialized version of the On-Premise Only Pattern. 

Non-Concurrent Login Pattern. Non-Concurrent Login provides the system behavior for when one 
account is used to login more than once at the same time. There are sometimes specialized No-Go Paths 
for this pattern. Notably there are patterns where: (1) upon a second login, the previous session is 
immediately logged off, or (2) a second login is denied until the first session is logged off, or (3) a variant 
that combines the first two where the second login is given the option of terminating the prior session, and 
only if they do so can they log in, or (4) schemes where one or both of the application sessions are 
notified of the concurrency. Many (but not all) instant messaging services employ (1). (2) was used on 
some old terminal-based computer systems, but this approach is considered by the authors to be an “anti-
pattern” today. (4) is perhaps the most nuanced, and is actually required behavior for systems subject to 
US FDA oversight in complying with 21 CFR Part 11. 

4.4 Temporal Constraints 
Temporal constraints are defined by “when,” the actual or logical time when the Actor executes the Action. 
Temporal limits can be a time of day (during business hours), or some other defined window of time. 
Temporal constraints also include limits like time to perform an Action – for example, limiting the time to 
complete a ticket purchase. 

Temporal constraints are very much like location constraints, in that they both restrict access to Actions 
based on attributes or behaviors of the Actor (in this case, when the Actor is acting, how long they take to 
act, etc.). Unlike location constraints, temporal constraints generally stand alone and are not easily 
confused with other constraint types. 

One counter example of this is in financial securities where limits are frequently imposed that start at a 
fixed point before the end of each quarter and continue until financial statements for the quarter are 
released; this defines a window of time, but because the window could be based on Actor (which 
company are they part of), or the Object (which security is being traded) even temporal constraints can 
have ambiguity with data constraints. The good news is that “type” of constraint is just a tool for 
remembering to consider all aspects when developing requirements. The resulting requirement is the 
same regardless of whether you conceive of it as a temporal constraint, a data constraint, or any other 
type. 

Opening	  Questions	  
When (what time of day) will teams be executing this function? Will they be working outside of normal 
business hours? Even if they donʼt usually work outside of normal business hours, could they ever? 

Are there specific months/weeks/days in the calendar year when teams will be using this function? 

Will there be different versions of the application presented depending on the time of day / year? Note: it 
can be viewed as a security concern that users not access a given version outside of the prescribed 
window. In any case, it is an overall quality issue to have the system behave appropriately. 

Clarifying	  Questions	  
Ambiguous time period: What differentiates the allowed time(s) from the disallowed time(s)? 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  15 

Risk of Interfering with Needed Actions: Does the benefit of constraining the usersʼ behavior outweigh the 
risk of disrupting needed activity? 

Uncovering	  Hidden	  Constraints	  
Planned Obsolescence: Is there a planned retirement date for the function/application? Will the function 
be needed only for the duration of a project? Do these need to be enforced by the system? 

Exceptions: Are there times when this function should be disabled? Are there days when this function 
should be disabled? 

Timeout: Are there time limits for completing a transaction? Are there limits on the length of a [login] 
session? Are there limits on the maximum period of inactivity? 

Advice	  
For temporal constraints, understanding normal operational hours, what times of day are meaningful to 
the organization, as well as the organizational calendar will help define temporal constraints. Whenever 
possible, leverage the existing financial calendar and daily schedule of operations many organizations 
have. 

Not all organizations employ temporal constraints, and those that do will typically use either the During 
Business Hours Pattern or the Not During the Batch Cycle Pattern described below. When implemented, 
temporal constraints generally affect all functions within a system, either for all users or specific users. 
However, it is conceivable to restrict access by group, such as for different shifts, or on other more 
tailored bases such as is done with physical access to facilities (via key cards). 

If you choose to implement temporal constraints it is critical that you carefully consider how they will affect 
usersʼ ability to achieve their goals, which for an in-house system is to serve your customers. Temporal 
constraints are most commonly applied to deter bad actors, which is good. At other times they serve to 
protect system resources (time-outs), again worthwhile, or even to create hard limits to enforcement 
management policies. All temporal constraints can impede necessary work in ways that are sometimes 
unexpected. We will discuss reviewing the difference between wanting to and being able to apply a 
constraint versus it being something you should implement in the Common Themes section. 

Patterns	  
During Business Hours Pattern. During Business Hours defines a time period during the day for 
“normal” operational hours during which all access to the system is allowed, for example, 6 AM to 6 PM, 
Monday-Friday, excluding holidays. Access outside of normal operating hours is either denied or 
permitted only to privileged users. Physical building access is often controlled using this pattern, and most 
operating systems can restrict logon hours to specific times of day. If you use this pattern, make sure 
there is a means in the requirements to specify and/or maintain the business hours for the system, and to 
facilitate overrides when needed. 

Not During the Batch Cycle Pattern. Similar to the During Business Hours Pattern, Not During the 
Batch Cycle defines a time period when updates to the system are not allowed, usually to maintain data 
integrity during a batch processing cycle. Access to functions that can change information in the system is 
blocked, putting the system in “read-only mode,” or access is blocked entirely. Large batch processing 
cycles have been a hallmark of legacy systems, dating back to the first mainframes. Faster computers, 
more sophisticated software engineering techniques, and an expectation for 24×7 access have led to a 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  16 

decrease in the prevalence of batch jobs having exclusive use of the system, but if you have any batch 
processes you should consider if there are any processing actions that are not safe to perform during the 
batch and design accordingly. 

For the Duration of the Project. For the Duration of the Project relates access to information or 
functions to a project, program, or process with a defined start date and completion date. A full 
implementation of this pattern grants access to a set of information and functions on a specified start date, 
and removes access after the completion date. In practice, organizations rarely implement this pattern 
fully; at best, project-related documents are retained for a specified period of time and then deleted, which 
effectively removes access. 

4.5 Input Constraints 
Input constraints are limits on the direct and indirect input values to an Action, including monetary values, 
quantity, and other factors; for example, limits on the maximum value of a check for which an employee 
can authorize payment, or ensuring the person who requests a check canʼt also approve the same check. 
The input values can either be provided by the user or can be constraints on the value options made 
available to the user by the system. 

Input constraints blur the lines between security and quality, since some constraints will exist solely to 
enforce reasonable inputs; for example, ensuring a future date is actually in the future. Unsurprisingly, 
input validation falls under the category of input constraints, a concern that has both quality and security 
implications. As we discussed in the Approach, quality and security are often flip sides of the same coin. 

Like information constraints, input constraints limit use based on values or properties of information, 
however, information constraints relate identity (Actor) to information (Objects), while input constraints 
apply limits on executing functions (Actions) on information (Objects) based on values of Objects provided 
as inputs to the Action, or combinations of Actors and Objects. 

Opening	  Questions	  
What are the maximum (or minimum) input values for which the team is authorized to execute this 
function? 

Is a type designated in the transaction where the types available to different users vary? 

Are there limits to what is reasonable for a field? (E.g. a person who is 12 feet tall, or a 120 years old) 

Are there combinations of inputs that are nonsensical? 

Clarifying	  Questions	  
Ambiguous Object/Actor combination: Does the limit apply only to this team, or anyone executing this 
function? 

Uncovering	  Hidden	  Constraints	  
Pick extreme values for inputs: Would the team still be authorized to execute the transaction for values 
greater than [silly extreme value; 100 Billion]? 

Pick invalid inputs: What if [someone entered a letter in a numeric field]? 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  17 

Scenario-based constraints: Is the team/individual always allowed to execute the function? Are there 
certain situations when the team/individual should be prevented from executing the function? (Like for 
restrictions based on the input values, transaction options, etc.) 

Advice	  
Input validation is the most common type of input constraint. If there is a way to define these globally, it is 
often preferable. This can be general statements: “dates must be MM/DD/YYYY” (beware of localization 
needs!), “unless otherwise specified, integers must be non-negative”, “unless otherwise specified, non-
whole numbers will accept up to two digits after the decimal”, “text fields may not be longer than the 
database field they map to can store” (assuming here that the stakeholders will see and review the 
lengths in a data model), etc.. 

It is frequently not deemed worthwhile to spend time documenting the input validations required for every 
input field. Some projects will leave it to the developers to do what is “reasonable.” In such a case the 
authors would recommend that the developers record what is implemented, and that the stake holders 
review that to confirm it is acceptable, and that those de facto requirements be tested. 

Even if you donʼt want to define the constraints on every field, there may be particular fields you want to 
call out. Date of Birth being in the future is nonsensical. Many systems will prevent back-dating and/or 
future dating transactions, or limit the distance. Policy end dates may be required to be on the last day of 
a month. End dates/times generally cannot be earlier than start dates/times (unless the system gives this 
special meaning). 

Never forget the format of structured data like phone numbers: if you donʼt specify whether you want 
“+1.555.123.4567” versus “(555) 123-4567” versus “555-123-4567” you may get a system that accepts all 
three, or only one (and there are many other ways of formatting phone numbers). It goes beyond 
constraints, but you may also want to specify that the user types only the numbers and the formatting 
characters are to be inserted by the application. (And again, keep localization needs in mind.) 

Regardless of whether you specify the detailed input validation, all projects should consider what the 
application behavior should be when an input validation catches something that is not accepted. This is a 
specialized form of “No-Go Path”, and we will discuss it further in that section. 

Beyond basic input validation, awareness of key threshold values, either in terms of volumes or dollar 
amounts, can be helpful to defining input constraints. Building a threshold catalog may or may not be 
practical, as these thresholds may vary depending on the business function in question. 

If your system handles money, you should always ask whoever oversees the financial dealings whether 
there are financial/accounting controls that apply. Whether you think of these as constraints, business 
rules, workflow, or general requirements, make sure they are accurately reflected in the requirements. For 
systems that produce checks, originate funds transfers, etc. all but the smallest organizations typically 
implement both the Transaction Limits and Dual Controls patterns to protect payments. 

Patterns	  
Transaction Limits Pattern. Transaction Limits define a maximum (or minimum) value for a key input to 
a transactional function, for example, a dollar-value limit on a purchase or account transfer. Limits can be 
absolute (Functional Transaction Limits) or vary depending on role (Role-Based Transaction Limits). 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  18 

Many organizations implement purchasing limits using a Role-Based Transaction Limit pattern, where 
higher-ranking managers have larger limits on their purchasing approval authority. 

Input Validation Requirements Pattern. Input Validation, the intersection of quality and security, as a 
pattern establishes the list of valid values that can be supplied as inputs to an Action. Most input 
validations are trivial and should be defined globally, but some can be tied to a specific requirement. 
Although input validation frequently has been left as an exercise for developers to implement in code, 
business rules often determine what values are valid. By including Input Validation in requirements, valid 
values can be constrained more precisely, and are more likely to be tested (with proper traceability). 
There are a large number of common validation checks, which we will attempt to catalog as we get the 
catalog overall patterns online for community use. We will also work to catalog “No-Go Path” options 
where it comes to input validation. 

4.6 Go Path and No-Go Path: The Effect of Constraints 
Requirements generally define the “normal,” expected action, the “Go Path” (also sometimes called the 
“happy path”). Your requirements may also define alternate paths that may occur. With a focus on 
constraints, we need to make sure we document what happens whenever a constraint is encountered, 
which we call the “No-Go Path.” 

For example, if the Actor meets all of the restrictions, the function is executed as defined; for example a 
Salesperson in the Minneapolis office is allowed to create a new Minneapolis client. But what happens if 
someone tries to execute a function and is not authorized; for example a New York Salesperson tries to 
create a Minneapolis client? Throwing up an “ACCESS DENIED” error message11 isnʼt always the right 
answer, and is hostile to a user who is only trying to get work done. 

Consider SharePoint – when a user tries to open a page theyʼre not authorized to view; instead of seeing 
“Access Denied. Sorry, youʼre done,” SharePoint presents an access request form, complete with a box to 
explain why access is needed, that is automatically sent to the pageʼs owner. Other possible responses 
could include automatic redirection (escalation) to an authorized user (such as a supervisor), or allowing 
the action anyway, but warning the user beforehand, and alerting a supervisor afterwards. 

For each constraint we must always define what to do when the constraint is violated—the “No-Go Path.” 
Considering Go/No-Go Paths is the final component of the requirement gathering process when it comes 
to constraints. In practice the No-Go Paths are usually defined as constraints are defined. 

As the reader may observe, once you begin to define No-Go Paths, there is a natural synergy with 
implementation of exception handing. Including the No-Go Paths in requirements helps ensure conditions 
that should be stopped or redirected are designed, coded, and tested later in the development cycle. 
Similarly, when developers encounter unexpected conditions (“system errors”), there will be a natural 
framework to discuss how such conditions are to be communicated to the user, and how the application 
should behave as a result. 

                                                        
11 Security professionals have been conditioned towards denying access being the primary tool for 
achieving security. This creates tension with groups who have business needs to meet. Weʼre advocating 
finding a “middle path” so to speak. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  19 

Questions	  to	  Consider	  
If a constraint is violated, what should the system do? Does it help the user ultimately accomplish their 
goal if possible? If the Actor receives an “access denied” message, what should be their next step? The 
next step can be used to fashion a more helpful error message, or be directly implemented in the system. 

Can user experience be improved by preventing invalid input actions rather than reacting to invalid 
actions? 

Consider ambiguities where no path applies: Do any business rules have situations that are unaccounted 
for? (e.g., we cover <500 and >500 but not =500) 

Have the requirements provided guidance for what to do in the case of a “system error”? Is there a fail-
safe path the system can follow “when all else fails?” 

Advice	  
No-Go Paths may represent new Actions within the system, and (recursively) also need fully defined 
constraints. Infinite recursion can be avoided by specifying (at some point) ALL violations follow a defined 
alternate flow. “If all else fails… do this.” No-Go Paths need not be defined separately for each constraint, 
they frequently can be grouped or defined globally. 

Remember the primary purpose of information systems is to allow users to accomplish their goals. 
Security (including integrity) needs to be part of getting them to their goal, not a road block. The system 
will be more useful the more it guides the user towards their goal. Instead of just an “invalid input” 
message, mark the fields that are invalid, and provide the validity criteria. Instead of “access denied”, 
provide an alternate means for the user to accomplish their goal (e.g. routing a request to an authorized 
approver, or provide instructions on alternatives available to the user). In some cases the action simply 
violates policy, and if so, identify the policy. The goals in designing a system are not to be cryptic and to 
facilitate success whenever possible. 

A primary way to enhance the security of a system is to design it in such a way that users are not 
incented to circumvent the security controls. “User-friendly” isnʼt coddling, it is enhancing to all aspects of 
the system, and that includes security. 

Patterns	  
These first patterns are fundamentally preventive in nature. They constrain user behavior by not giving 
the user the option to perform an invalid action. Note that if you use these techniques that during 
implementation care must be taken to ensure that security is still applied on the server side of processing 
so that malicious actors cannot gain access by circumventing limitations imposed in the user interface. 

Prevent by Not Offering Pattern. If the user cannot perform a given function, remove the means by 
which they would have initiated the action. This could mean changing the menus of the application to 
remove menu items that the user is not authorized to select, or that are situationally not allowed based on 
the current context in the application. The modification has two available forms: actual removal (not 
displayed) or “greyed out” (displayed, but shown in grey and not selectable). The same can be done for 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  20 

buttons that trigger options—either only display the button when the action is allowed12, or “grey it out” 
when not allowed. 

Delay Offering Submit Option Pattern. This is a variant of the Prevent by Not Offering Pattern, and 
applies most commonly to input validations. The button/link to proceed from the current page is either not 
displayed, or is “greyed out” until all requirements on the page are met. It is common for deficiencies to 
not be displayed until an attempt is made to submit, so if you use this pattern, make sure the application 
still guides the user through all required details. 

Filter Available Options Pattern. Filter choice lists to only those options available to the user. For 
example, if the user cannot view a particular patient, donʼt show that patient in search results (unless to 
omit them would be confusing, and then this pattern is a poor choice), filter drop-down lists to only 
applicable values in the current context. 

The remaining patterns are fundamentally reactive in nature. They define system that needs to occur 
when a user attempts to perform a restricted Action. 

Route for Approval Pattern. If the user attempts to perform an action for which they are not authorized, 
notify them and give them the option of still submitting the transaction and having it routed to an 
appropriate person for approval. Variants of the pattern could include automatically routing for approval 
without prompting for confirmation. 

Allow Override Pattern. The user is notified of the issue and given a chance to proceed anyway (to 
override the constraint). Typically used for minor safety controls, for example validating that you really 
meant to say that your new hire is over 100 years old. It is common for such override actions to be logged 
(who performed the override and what the details are), so if that is desired make sure it is part of the 
articulated requirement. A variant would include notifying the user that their decision to override will be 
logged. It is common for only particular roles to be granted permission to override, in which case this 
pattern would pair with other patterns, based on the particular Actor. 

Warn and Notify Pattern. A variant of the Allow Override Pattern. The user is notified and given the 
change to override. Notices of overrides are sent to a responsible party for follow-up. Variants would 
include notifying or not notifying the user that a decision to override will result in such and such party 
being notified. 

Access Denied Pattern. When the Action is simply not allowed, the user is notified. The notification 
should be in terms the user will understand, and if possible the reason it is not allowed should be included. 
As previously discussed, too much use of this pattern can constitute an anti-pattern. 

Log Only Pattern. In this situation, action is not prevented, it is merely noted (or alternately, notification 
may be actively sent). A variant of this pattern would be to log all attempts to violate a particular constraint, 
regardless of whether the Action ultimately is successful or not. This pattern really is just defining a form 
of audit logging, which is normally considered a non-functional requirement. We are including it here 

                                                        
12 Features appearing and disappearing for the same user can lead to frustration. Only remove entirely if 
it is beyond obvious when it appears and disappears. For greyed out items, consider offering a tool-tip 
when hovering to say why it is unavailable. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  21 

because during the process of determining constraints, outlier events may be discovered that should be 
sent to the audit log. 

One Error at a Time Pattern (Anti-Pattern). Each time submit is pressed, only the first error is reported 
to the user, even though there are multiple issues. For example, on a form where the user has made 
three errors, they attempt to submit and are told only of the first error; they fix that error and attempt to 
submit again, and are now told of the second error, and so forth. Failure to supply all errors at once leads 
to significant user frustration and wasted time. One instance where this pattern should absolutely be used 
is providing feedback on user credentials (i.e. username and password). For credentials, the only 
feedback that should be provided is that the credentials are invalid. Reporting “invalid username” allows 
malicious attackers to discover valid usernames. This pattern becomes advisable anytime detailed 
feedback would realistically assist in an attempt to compromise the system. 

4.7 Techniques to Improve Constraint Requirements 
At this point we have conveyed our conception of constraints as part of functional requirements, 
particularly as regards functional security requirements. Since many teams may be unaccustomed to 
having so many constraints as requirements, we want to provide some general guidance; this is both to 
make the requirements as useful as possible as well as to attempt to avoid having a newfound focus on 
constraints gum up the whole application development process. 

The techniques described here should help ensure an added focus on constraints doesnʼt become a 
detriment. If focusing on constraints hinders the process, attention will be withdrawn. Then weʼll continue 
to have too many systems with too many rough edges that compromise security and safety. 

As you read these suggestions, keep in mind that they all can be used for all requirements, not just 
constraint-based requirements. 

Prioritize	  
“Just because you can doesnʼt mean you should.” 

This is probably the single most important piece of advice in this paper. Designing a system to control 
absolutely everything it possibly can is likely to result in a user experience that feels like working for the 
worst micro-manager in history. 

Putting in too many constraints has a number of very real negative effects, beyond just user annoyance. It 
can increase the complexity of the code, making it more error prone and more “brittle,” which is to say, 
difficult to maintain and especially enhance. It may sap resources so that not-so-important constraints get 
implemented while so-very-important features are still waiting to be done. And well-meaning constraints 
can get in the way of valid work that occurs in ways that the group specifying the requirements didnʼt 
contemplate. 

This is not meant to deter you from using constraints, only to encourage you to look critically at which 
available constraints add to safety, security, and usability, and which are not as valuable. 

Depending on your work style, you can still bring up all of the potential constraints (some people prefer 
free-ranging discussions, and others want to focus on only the most important and squash “tangents” 
early—do what works for your team). Discuss them in requirements/design sessions, throw them on the 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  22 

white board, or put them on a list of requirements. Just make sure you review what to keep and what to 
cull before the requirements start being implemented. 

A useful technique is to create a list of all constraints (and a summary of their No-Go Path), including what 
they apply to. “Force rank” the list, which is to say, put the constraints in order from what you think is the 
most important and valuable constraint down the least valuable. Hopefully the items at the top of the list 
qualify as “must have” requirements. But as you proceed down the list you should go through the 
succession of “should have”, “nice to have”, and “probably should skip”. 

There is a school of thought that the majority of “nice to have” features are never used and thus are a 
waste of resources to implement. There is an acronym that reflects this: “YAGNI” (pronounced YAG-nee), 
“Ya Ainʼt Gonna Need It.” Constraints are preventive measures for security, safety, or both. So the need is 
based on the likelihood of malicious or inadvertent misuse, with the reduction in risk exposure (tangible 
and intangible) weighed against the cost of prevention. This type of risk assessment is exactly the 
information security professionalʼs job, and so the determination of which constraints to include or exclude 
is where functional security requirements will overlap with traditional security practices and where expert 
advice should be sought.13 

However you arrive at your assessment, drop any requirements that donʼt add value. Note which are firm 
and fast requirements, and for the rest, work with the implementation team to understand what is easy 
and what is hard to implement. This may be enough to decide which requirements to keep and which to 
drop. Another approach would be to request that the development team initially implement all 
requirements that you place above a cut-off line (usually somewhere between the end of “must have” and 
the end of “should have”), along with any others that donʼt materially affect how long it takes to implement 
the overall functionality the constraint applies to. Then if there is still time remaining later in development, 
you can return and implement more. 

If you are using an Agile methodology with user stories, a backlog, etc. then you already have a 
mechanism for doing exactly what was just described. Implement what is either absolutely critical, more 
easily done up front, or fits the schedule as part of the main user story, and create additional stories for 
aspects you defer. The product owner will determine how important those other stories are relative to 
other functionality that could be developed, and thus the constraints will get implemented when they are 
the most valuable feature of the system awaiting implementation. 

Generalize	  
We have said this already, but it bears repeating: define as many of the constraints as broadly as 
possible. 

Repetition has many costs while you are working on requirements. These costs include the costs of 
repeating the analysis and/or writing, applying changes in many places if a detail changes, ramifications 
of inconsistency when one location is inadvertently missed, both developer and tester effort in trying to 
determine if there are any subtle differences in the repeated text, and both developer and tester in 
determining if there are cases where the repeated text is omitted. 

                                                        
13 The quote that began this section can be rephrased as: “Security amateurs know how to secure things; 
security professionals know when you donʼt have to.” 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  23 

When constraints are universal, state them universally rather than as part of particular Actions (features 
or functions). When a constraint repeats but is less than universal, be creative with how you represent it. 
Having text describing the constraint and a matrix showing where it does and doesnʼt apply is often a 
good structure. Likewise, stating requirements that are generally true and then noting the exceptions can 
be clearer than repeating requirements in two thirds or more of the function descriptions. 

Conciseness is a virtue in any recorded requirements, as long as the brevity isnʼt so severe that it causes 
ambiguity or becomes cryptic. 

Remove	  Ambiguity	  
Ambiguous requirements are almost more insidious than incorrect requirements. With incorrect 
requirements, any reader will get the wrong answer, so such defects can be caught in reviews and walk-
throughs. But with ambiguous requirements, a reviewer who is validating the requirement may interpret 
with the correct frame of reference and believe it specifies things correctly, but the coder could 
misinterpret it and implement something consistent with the requirement, but not acceptable. Or perhaps 
the coder gets it right, but the tester misinterprets creating a flurry of activity as everyone has to help 
determine where the disconnect is, and then which interpretation was the correct one. 

Here are several causes of ambiguity to keep an eye out for: 

• Unstated assumptions 
• Poor language/grammar 
• Loosely used terminology 

The issue with unstated assumptions is that frequently we arenʼt conscious of the assumptions we make14. 
There are frequently details of the problem domain for an information system that the group providing the 
requirements knows inherently but that implementers of the system have no reasonable expectation of 
knowing. Other times assumptions may be due to not knowing there are alternatives. An example comes 
in systems that perform detailed calculations because there are actually multiple rounding rules to pick 
from (it isnʼt always round one half or more up and less than a half down). 

To combat the assumptions issue, be in the habit of questioning whether there are assumptions being 
made, and explicitly state assumptions that are not well understood by all team members15. Even more 
important is for anyone reading a specification to call out if they find the need to make an assumption; this 
could be a reviewer, a developer, a tester, etc.. 

On the topic of grammar, this is not an invitation to nit-pick every issue found in written requirements. 
However, some grammar issues lead to requirements that could have multiple meanings. It is in that 
context that you need to call it out as an issue. In essence what is happening is that you are being forced 
to make an assumption about how to parse the language of the requirement. So like the assumptions 
above, call it out if you find yourself having to make an assumption in meaning as you read. 
                                                        
14 This is likely due to cognitive biases that affect our beliefs. Awareness of these biases may help 
mitigate them; Wikipedia has an excellent list at http://en.wikipedia.org/wiki/List_of_cognitive_biases. 

15 It is okay to have implicit assumptions if it a reasonable expectation that everyone will have the same 
assumption. As a trivial example, if a requirement is to place a DVD in the computer, it is assumed that it 
will be placed in face down (label up), but that does not need to be stated. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  24 

We cited an example of a common term that is used loosely earlier: When you say “employees,” do you 
mean all employees and contractors, or just all employees? “Employee” has a precise meaning, but it is 
often used colloquially to mean “staff.” Look at words and phrases used in requirements with an eye for 
whether there are ways to misinterpret them. Again, when there are multiple viable interpretations 
available, an assumption must be made, so the same strategies apply; the most important strategy is still 
to always question when you find yourself having to make an assumption. 

Re-‐Use	  
Re-using materials is a boon to efficiency, but it can equally well be a boon to quality (and thus security as 
we have discussed elsewhere). Materials that have already been used have already been validated, so 
are less prone to error than drafting from scratch. The other way of looking at the same idea is that if you 
know a particular artifact will be used over and over, it becomes more cost effective to spend time making 
sure it is well thought out. The following are key ways to avoid “reinventing the wheel”: 

• Find existing artifacts 
• Stand on the shoulders of others 
• Tool for re-use 
• Incorporate into policy 

Throughout the paper we have suggested existing artifacts your organization might have that would be an 
aid to functional security requirements analysis. These included items such as org charts, data 
classifications, and financial control policy documentation 

By standing on the shoulders of others, we are suggesting you use prior work that is [legally] available to 
you. This could include repositories of patterns prior projects in your organization have developed, 
requirements documents from similar prior projects, and public resources. The authors intend to make the 
Patterns described in this paper available online in a repository (but described in more detail) for anyone 
to use. We will be adding new patterns as they are suggested to us. 

When we say “tool for re-use” we are suggesting that on each project you look at materials and 
techniques you had to develop and you determine how to make the available for other projects in the 
future. This would in turn feed the “Find existing artifacts” and “Stand on the shoulders of others” 
strategies. In particular keep in mind if you developed a social group catalog, a data group catalog, a 
location catalog, or a limits catalog (e.g., for Transaction Limits). 

Our last re-use strategy is directed towards security professionals. Security policy documents frequently 
focus on infrastructure controls and address application development mainly in the context of non-
functional requirements and vulnerability management. While we have pointed out that most constraints 
are application-specific, some will turn out to apply to nearly every development project for the 
organization. Identify constraints and other functional requirements that are a matter for policy 
enforcement for all applications, and incorporate them into your information security policy. 

5 Security Actions 
For most information systems16, user accounts and other means of managing user identity come into play. 
Thus for most systems the functional requirements must include administrative activities to create and 

                                                        
16 The primary exception would be web applications offered anonymously to the public. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  25 

maintain user accounts. Administrative functionality in general can tend to get short shrift in the 
requirements process. After all, the administrative operations are not where most systems deliver their 
value to users; they are merely a means to an end. Just as constraints do not represent the “happy path” 
of allowing users to attain the systemʼs value proposition, administrative functions need to be included in 
the process in order to achieve BSMʼs goal of having the requirements define all human/information 
interactions permitted by the system. While all administrative activities must be included, we will in 
particular provide some guidance around the actions that support security administration. 

Just as with all other functional requirements, you will need to look at what the constraints are to be 
applied to Actions within administrative functions. These tend to be straight forward—for example most 
organizations know who they want to have creating new user accounts, increasing permissions of existing 
users, and who can reset passwords. 

Broadly speaking, security Actions break down into three categories: Managing User Accounts/Identities, 
Managing User Permissions, and Security Actions by the User. The first two categories contain 
administrative Actions, and the third contains Actions performed by the end user of the system17. We will 
discuss each category in turn, and finish with some notes on how a functional requirements view of 
security fits into the system activity that must be implemented to have a secure system. 

Be aware that many of the details of the Actions we are describing in this section will be prescribed by 
non-functional security requirements (password policies, multi-factor authentication requirements, system 
architecture dictates, etc.). We feel there are good resources (and generally good practices) available on 
establishing non-functional security requirements, so we will assume your project has robust non-
functional security requirements and not focus on that aspect here. 

For all of these actions, the functional requirements may turn out to be boilerplate for all future 
development activities. This is particularly true when there is a common security infrastructure (such as 
third-party tools to manage RBAC, ABAC, etc.) that all new information systems are expected to run atop. 
Keep in mind when first establishing the requirements that they are not just a matter of security policy, 
they are creating user experience and thus stakeholders representing the users should be at least 
consulted and ideally would be actively involved in the definition of the user experience for security 
Actions. 

5.1 Actions to Manage User Accounts/Identities 
This could be described as the “user lifecycle.” The key point is to make sure you provide for all steps that 
will be relevant to your system. A typical set of Actions might look like this: 

• Create user 
• Update user information 
• Suspend user 
• Reinstate user 
• Delete user 

                                                        
17 Administrators are also users, and are sometimes “end users.” To try to ease confusion, we will use the 
terms “administrative user” and “end user” where an administrative user has permission to perform 
administrative Actions and an end user has permission to perform non-administrative Actions. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  26 

Create user can be complicated by the steps to set one or more roles, other permissions, etc.. Create 
user can also turn out to be a multi-step, or even multi-person workflow where the Dual Controls Pattern 
applies. 

Update user information may be a single Action, or it can be broken out into several smaller pieces. A 
common piece to break out is “reset password” since aside from creating users and later removing their 
access, password resets are by far the most common security administration activity for most systems 
(and in actuality probably occurs in most places even more often than creating and removing access). 

5.2 Actions to Manage User Permissions 
Creating the account is probably only a means to an end. That end is in using permissions to control what 
actions they may perform, as has been discussed heavily in this paper, and to be able to attribute actions 
to a particular user18. 

The most common means of granting permissions is by assignment of roles, and thus the Actions to 
consider in functional security requirements might be: 

• Add user role 
• Remove user role 

In such a case it is assumed that all permissions are granted to the roles, so users acquire permission by 
virtue of their role or roles. 

However, if your system will be allowing permissions to be set for individual users, then the Actions could 
resemble: 

• Set user authorization 
• Change user authorization 
• Revoke user authorization 

Change would only apply if the authorization was other than a “yes/no” proposition. In examples we have 
seen, there can be a dollar limit on transactions that a user is authorized to either initiate or approve—
thus we have an authorization setting that can be changed. 

In systems where there is a notion of “ownership,” there can be additional administrative Actions that 
pertain to maintaining ownership data. Assigning ownership of an Object to a different user would be an 
example. ACL-based implementations where the control is per user account rather than per role would 
also entail management operations. 

In your system, consider the operational implications of the constraints you have imposed, and wherever 
you have an operational component where an administrative user is able to or required to intervene, make 
sure you have appropriate functions defined. 

                                                        
18 We generally consider audit logging, which is recording actions a user takes, to be a non-functional 
requirement. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  27 

5.3 Security Actions Performed by the End User 
There are critical security activities performed by the end user in the course of using an information 
system. Common Actions would include: 

• Logging in 
• Logging out 
• Updating user information 
• Delegating authorization 
• Requesting access (either to obtain an account, or to gain additional permissions) 

We will provide brief guidance on each for aspects that may not always be considered. There is a great 
deal of further information available for readers wishing to dive deeper into these topics. 

Logging	  In	  
When contemplating the functional requirements for logging in, the two key things to note are (1) what 
happens when unsuccessful, and (2) what are the audit logging requirements. 

“Failed login” is frequently a complex, multi-layer workflow, with options to use pre-stored information to 
re-obtain credentials, etc.. Previous reminders that a well-built system should assist legitimate users in 
achieving their goals also applies here. 

While the fact of logging in is frequently a security event requiring logging to meet audit requirements, 
many sub-steps in the process may also be worth considering. The obvious one is to record failed login 
attempts. Less obvious is that you may want to record the success individual steps within a successful 
login. If your system requires multi-factor authentication, such as with the use of a physical token, being 
able to demonstrate that a successful login included verification of the token can be critical in non-
repudiation disputes. 

Logging	  Out	  
We will provide three quick thoughts on this topic. If you allow the user to log in, you should give an 
explicit option to log out. When a user is logged out, it should result in positive indication that they have 
successfully done so. After logging out, it should be a relatively simple matter to log in again (e.g. donʼt 
place the user on a static page with no links). 

Updating	  User	  Information	  
This pertains to user information that is part of security operations (credentials, and mechanisms for re-
obtaining credentials if forgotten). It is assumed that if the system allows users to record information about 
themselves (pictures, contact details, etc.), that maintenance of such information has already been 
contemplated. 

The key Actions here are “Change Password” and an update Action for information used to re-obtain a 
username or password if forgotten. 

Delegating	  Authorization	  
Some systems include functions that allow users to manage permissions of other users. Almost all social 
media includes this, as do shared calendaring systems. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  28 

A particular security Action is to “delegate” authority, which is to say, to grant to another user a permission 
that the delegating user possesses. The key detail to consider here is that permission to perform an 
action is different than permission to delegate. Thus when delegating you need to clearly note whether 
you are only giving the user the ability to delegate a permission, or whether you are also giving the ability 
for the user to delegate the delegation permission itself. Typically these are managed as two separate 
grants. For example, if you own a resource in a system, you may be considered an “administrator” for that 
resource and also be able to set another user as also being an “administrator” for the resource; but an 
additional permission you could grant is for that other user to also be able to designate additional 
“administrators.” 

Requesting	  Access	  
Some systems allow a user to create their own account, in which case this would be the same as the 
“Create User” Action discussed in Section 5.1, Actions to Manage User Accounts/Identities. In other 
cases, an anonymous user to a web site may be given the opportunity to request access, which would 
trigger a workflow as was discussed in Section 5.1 as part of the “Create User” Action. 

The other version of this comes as a result of constraints where access is denied, but an option to request 
access is provided. This would occur as part of a No-Go Path, as discussed in Section 4.6, Go path and 
No-Go Path. We noted at that section that Microsoft SharePoint provides an example of this technique in 
action. 

5.4 System Actions at Runtime 
For information security, identification, authentication, and authorization are key, however, the details of 
how each of these operations takes place are not functional requirements. Within the application when it 
is built, there will be technical mechanisms for managing these. The functional requirements should not 
dictate those technical mechanisms, and whenever possible should not even be concerned with them. 

For example, when a user first uses a system, there will be a business requirement that the user identify 
who they are and provide credentials that allow the system to authenticate that they are who they say 
they are. That is the human-centric portion of the process. How that information is technically vetted is not 
a matter for functional requirements.19 Nor are the equally important technical mechanisms by which the 
subsequent transactions performed by the user are validated by the system, wherein the system verifies 
that it is still working with the same user. 

Likewise, authorization at a functional level occurs at a time far removed from when the user performs a 
particular action. However behind the scenes of the system, whenever a user performs an action the 
system works to consult the artifacts left behind by the functional authorization process to ensure that the 
user is performing a valid action. Both are crucial parts of the application of information security to an 
information system, but one of them is a matter of functional behavior and user experience, while the 
other is a technical matter best addressed in technical design. 

                                                        
19 In cases where it is necessary, functional requirements should specify a level of assurance that the 
user is authentic. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  29 

6 Requirements Quality Assurance 
As we mentioned earlier, quality assurance is a broad topic and more than we can take on here. On the 
other hand everyplace a system behaves differently than it ought to poses the potential for misuse, risk of 
loss to the organization (or user), or compromise of integrity and availability. 

Because BIS is focused on performing information security tasks with human behavior in mind, we think 
the most promising trend is the use of checklists. To this end, here are our favorites: 

• http://www.jot.fm/issues/issue_2005_11/column4.pdf 

• http://elearning.tvm.tcs.co.in/rwi_html/SRSCheckList.pdf 

• http://www.cdf.toronto.edu/~csc340h/winter/assignments/inspections/JPL_reqts_clist.pdf 

7 Post Conditions 
A post condition is a statement of what must be true when a userʼs Action is complete, and can be stated 
both for successful completion and unsuccessful completion. For example, when an account transfer is 
completed successfully, the funds must be credited to the destination account and debited from the 
source account; if the transfer fails, the source account must still contain the funds, and the destination 
account must not have been increased. They are a means of explicitly calling out conditions that 
otherwise might be left as assumptions. 

They are a sort of formalized hygiene—think of it as an assertion: “At this point, the following must be true, 
or we have an exception from a functional point of view.” Many organizations that employ Use Cases will 
include “Post Conditions” as a part of their use case template. Regardless of whether Use Cases are part 
of your development practice, defining post conditions for every operation is a matter of organizational 
style. If you do use them in general, we advise you use them for both success and failure conditions. If 
you donʼt use them for in general, we advise that you note situations that have greater than normal 
potential for integrity issues and use them in those cases. 

8 Conclusion 
We have explained how the majority of current information security activity in gathering requirements 
misses the mark when it comes to engaging non-security team members, especially non-technical 
stakeholders. Because of this, there is a gap where information security practices today insufficiently 
address safety concerns in software use, and threats in the form of misuse of privilege (as opposed to 
mis-acquisition of privilege). 

To address this gap, we have presented a simple, pragmatic, check-list driven approach to engaging the 
stake holders of a system to provide the requirements that will appropriately control for safety risks and 
misuse of privilege. This approach is founded in and inspired by current behavioral and cognitive research, 
and Behavioral Information Securityʼs focus on how humans behave and interact with information. The 
founding assertion is that to have robust and secure information systems that the functional requirements 
must define all human/information interactions permitted by the system. 

The techniques presented make no assumptions of the SDLC or requirements gathering techniques 
employed, and in fact impose no constraints on how these activities are performed. Within any 
requirements gathering practice, it is possible to easily improve the robustness of the requirements by: 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  30 

1) including consideration of constraints, the means of enforcing constraints, security actions, and 
post conditions, and  

2) improving the efficacy of requirements by employing quality assurance techniques, the practice of 
guiding by checklist, addressing ambiguity, employing prioritization and generalization, and 
driving re-use. 

Finally, we proposed the value of bringing the “design pattern” concept used in system design across to 
system requirements gathering. To this end we have proposed a number of requirement patterns 
pertaining to functional security constraints, and will be bringing a new repository to the web to house a 
pattern language of requirements design patterns. 

All of these techniques are drawn from the authorsʼ practical experience. The next step is to test the 
techniques as explained by implementing the approach in a number of application development 
environments. We will be doing so in our current consulting work, but are also looking for others to help. 
Please contact us if you are interested in contributing to the expansion of these ideas. 

9 Bibliography 
Here is a list of reading material that either influenced our thinking or helped us write this paper. 

Anne Adams, Martina Sasse, Users are not the Enemy. 1999. http://dl.acm.org/citation.cfm?id=322806 

Brad J Cox, Policy Based Access Control (PBAC) for Diverse DoD Security Domains. 2011. 
http://virtualschool.edu/cox/pub/PBAC.pdf 

Charles B Haley, Robin Laney, Jonathan D Moffett, and Bashar Nuseibeh, Security Requirements 
Engineering: A Framework for Representation and Analysis. 2008. 
http://oro.open.ac.uk/10058/1/01435458.pdf 

Donald Firesmith, Specifying Good Requirements. 2003. 
http://www.jot.fm/issues/issue_2003_07/column7/ 

Donald Firesmith, Quality Requirements Checklist. 2005. 
http://www.jot.fm/issues/issue_2005_11/column4/ 

Gunnar Peterson, Collaboration in a Secure Development Process Part 1. 2004. 
http://www.arctecgroup.net/ISB0905GP.pdf 

Inger Anne Tøndel, Martin Gilje Jaatun, and Per Håkon Meland, Security Requirements for the Rest of 
Us: A Survey. 2008. http://dl.acm.org/citation.cfm?id=1340062 

Jan Jürjens, UMLsec: Extending UML for Secure Systems Development. 2002. 
http://dl.acm.org/citation.cfm?id=719625 

M A Sasse, S Brostoff, D Weirich, Transforming the ʻweakest linkʼ — a human/computer interaction 
approach to usable and effective security. 2001. http://dl.acm.org/citation.cfm?id=592514 

Michael L Brown, Software Systems Safety Design Guidelines and Recommendations, 1989. 
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA209832 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  31 

Nancy R Mead, Eric D Hough, Theodore R Stehney II, Security Quality Requirements Engineering 
(SQUARE) Methodology. 2005. http://www.cert.org/archive/pdf/05tr009.pdf 

Oracle, Fine Grained Authorization: Technical Insights for Using Oracle Entitlements Server. 2011. 
http://www.oracle.com/technetwork/middleware/oes/oes-product-white-paper-405854.pdf 

Oracle, Oracle Entitlements Server. 2008. http://www.oracle.com/technetwork/testcontent/oes-
entitlements-133195.pdf 

Richard Bender, The Ambiguity Review Process. 2004. http://benderrbt.com/Ambiguityprocess.pdf 

Rudolph Araujo, Shanit Gupta, Design Authorization Systems Using SecureUML. 2005. 
http://www.mcafee.com/us/resources/white-papers/foundstone/wp-design-authorization-systems-
secureuml.pdf 

Sascha Konrad, Betty H.C. Cheng, Requirements Patterns for Embedded Systems. 2002. 
http://dl.acm.org/citation.cfm?id=731467 

Torsten Lodderstedt, David Basin, and Jürgen Doser, SecureUML: A UML-Based Modeling Language for 
Model-Driven Security. 2002. https://edit.ethz.ch/infsec/research/publications/pub2002/SecureUML.pdf 

10 Appendix: Styles of Requirements Capture 
Different teams will handle capturing requirements in very different ways. Our goal was to have an 
approach that would enable any team to be able to incorporate the additional focus on functional security 
requirements. This section will highlight how it fits in to several of the most prevalent styles of eliciting the 
requirements and of recording the requirements. 

10.1 Elicitation Techniques 

Written	  By	  the	  Business	  
The least formal method, and the method where there are no dedicated requirements analysts involved in 
the creation of the requirements is where the business documents their requirements in advance and 
provides them to the technology group to implement. In this model, it would be preferable if the business 
stakeholders creating the requirements would work with a checklist based on this paper to ensure 
completeness by considering the various questions posed herein as they work. In absence of this, the 
technology group can ask the questions posed here during a joint review of the requirements 
documentation. In the former the business would take on more responsibility for facilitation or business 
analysis, and in the latter the technology group would be doing so. 

In	  Facilitated	  Session	  
This style of elicitation goes by many names including “JAD” (Joint Application Design), etc., and some 
Agile development practices may employ sessions the fit this model. The key feature from this paperʼs 
point of view is that there is a professional facilitator or analyst leading a discussion session during which 
the requirements are dictated and recorded. We encourage the leader of such sessions to base all work 
on checklists, but in particular to use a checklist that covers the topics we have listed regarding functional 
security requirements. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  32 

In	  Collaboration	  Between	  Technical	  Team	  and	  Users	  
Here we are talking about less formal sessions where the developers and users sit down together to 
discuss what the system must do. This would differ from facilitated sessions only if there is not a 
designated leader for the session who is trained in facilitation for elicitation of requirements. This can 
occur both when the process is very unstructured (small environments where developers and users sit 
down informally to discuss needs) as well as for certain Agile processes.  

We would suggest in such cases that the team essentially follow one of the two models above. They 
could have a checklist available to all participants and be in the habit of consulting the checklist as the 
group works to ensure all aspects of requirements are being addressed. Otherwise they could also 
designate one team member to act to monitor completeness; they would track discussion against any 
available checklists or review standards, and inject questions if they the discussion was failing to 
contemplate an area or concern. 

10.2 Recording Techniques 

Functional	  Decomposition/Hierarchical	  Requirements	  
In this model, features are grouped into hierarchies, and specific requirements are listed under the feature. 
They will typically each have a discrete number to reference them (such as 3.14.2, which would be a 
detail underneath 3.14). 

Constraints and post conditions that are specific to a feature would be sub-requirements under that 
feature; “No-Go Path” information would be details on the constraint. Global constraints would generally 
have their own section of the hierarchy. 

There should be little difficulty in adding the new topics to existing requirements, and the ability to 
establish topic templates for new features can help ensure that constraints and post conditions are 
considered. 

Prose	  Requirements	  
In this model, system behavior is listed in narrative descriptions of the desired system. Because there 
tends to be little structure in such requirements, adding consideration of constraints and post conditions 
should be easy to do, but difficult to do reliably as there is generally not a significant template structure to 
such requirements. 

Requirements	  in	  Use	  Cases	  
Use cases tend to be the most user-centric form of requirements. If you are using use cases, it is 
common practice to include pre-conditions and post conditions. A pre-condition effectively is a constraint, 
and thus any constraints that can be determined before the start of execution of the use case have a solid 
home, although typical use case formats donʼt lend themselves to talking about No-Go Paths. 

Constraints during the execution of the use case can be more of a problem. If you are showing flows with 
UML Activity Diagrams, there is a format for constraints that can be followed. A constraint on a UML 
diagram is any text written: {inside of curly braces}, and include an option to list what happens as a result 
(essentially a No-Go Path). Thus activity diagrams can be annotated to show constraints. Otherwise you 
will need to discuss the constraints in other sections of the use case, or add a section explicitly in your 
use case template. It is also common practice when using use cases, to also have a separate repository 
of business rules; many constraints would fit within such business rules. 



BEHAVIORAL SECURITY MODELING: 
FUNCTIONAL SECURITY REQUIREMENTS 

  33 

Story	  Cards	  
Story cards are used in many SDLC practices based on Agile. Typically the goal is for all requirements for 
a given user story to be able to be recorded on a 4”×6” index card. While the authors think that story 
cards are wonderful for organizing and managing a software project, that they are somewhat lacking 
when it comes to supporting a process of having robust documentation of requirements. While it is 
acknowledge that in Agile we must put people over process and running systems over documentation, 
there is room for judicious use of both process and documentation. 

Our preference would be that the story card be augmented by some other form of written support 
document that lists qualitative aspects of a story, which might include constraints and post conditions. For 
teams where that level of writing is considered out of line, it is encouraged that the discussions of 
requirements then include the topics of constraints and post conditions; it is better for such needs to at 
least be discussed even if it is deemed impractical to record them. 

About the Authors 
John Benninghoff is the owner of Transvasive Security. John started Transvasive to develop the idea of 
Behavioral Information Security, which combines Information Security with current research in the fields of 
economics, cognitive science, and organizational theory. John can be reached at john@transvasive.com. 

Karl Brophey is the owner and principal consultant for Brophey Consulting. Brophey Consulting works to 
bridge business product strategy and operations to information technology planning and delivery. Karl has 
spent his career helping companies meet their business goals using custom software, encouraging 
people who think differently to communicate effectively, and focusing on user experience and business 
value. Karl can be reached at karl@brophey.net. 


